FNPS Society

Main Menu

  • Home
  • Amalgamation
  • Terms of trade
  • Monotonic
  • G-8
  • Financial Affairs

FNPS Society

Header Banner

FNPS Society

  • Home
  • Amalgamation
  • Terms of trade
  • Monotonic
  • G-8
  • Financial Affairs
Monotonic
Home›Monotonic›Enantiomer-dependent immunological response to chiral nanoparticles

Enantiomer-dependent immunological response to chiral nanoparticles

By Richard Lyons
January 19, 2022
18
0
  • 1.

    Ma, W. et al. Chiral inorganic nanostructures. Chem. Tower. 117, 8041–8093 (2017).

    CAS Google Scholar

  • 2.

    Copeland, LO & McDonald, MB to Principles of seed science and technology 59–110 (Springer, 1999).

  • 3.

    Zhang, Q et al. Discovering the origin of chirality from nanoparticle-plasmonic protein complexes. Science 365, 1475-1478 (2019).

    Google Scholar CAS Announcements

  • 4.

    Guerrero-Martínez, A., Alonso-Gómez, JL, Auguié, B., Cid, MM & Liz-Marzán, LM From individual to collective chirality in metallic nanoparticles. nano today 6, 381–400 (2011).

    Google Scholar

  • 5.

    Kuznetsova, VA et al. Enantioselective cytotoxicity of ZnS:Mn quantum dots in A549 cells. Chirality 29, 403–408 (2017).

    CAS Google Scholar

  • 6.

    Sun, M. et al. Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles. Nat. Chem. ten, 821–830 (2018).

    CAS Google Scholar

  • seven.

    Kotov, NA Inorganic nanoparticles as protein mimics. Science 330, 188-189 (2010).

    CAS Google Scholar

  • 8.

    Cagno, V. et al. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat. Mater. 17, 195-203 (2018).

    Google Scholar CAS Announcements

  • 9.

    Wang, D. et al. Engineering of nanoparticles to locally activate T lymphocytes in the tumor microenvironment. Science. Immunol. 4, eauau6584 (2019).

    CAS Google Scholar

  • ten.

    Gerard, VA et al. Plasmon-induced CD response of metal nanoparticles conjugated to oligonucleotides. Chem. Commmon. 47, 7383 (2011).

    Google Scholar

  • 11.

    Yeom, J. et al. Nanoparticles and chiromagnetic gels. Science 359, 309-314 (2018).

    Google Scholar CAS Announcements

  • 12.

    Ma, W. et al. Detection of attomolar DNA with chiral nanorod assemblies. Nat. Commmon. 4, 2689 (2013).

    Google Scholar announcements

  • 13.

    Zheng, G et al. Tuning the morphology and chiroptical properties of discrete gold nanorods with amino acids. Angelw. Chem. Int. Ed. 57, 16452–16457 (2018).

    CAS Google Scholar

  • 14.

    Chen, W. et al. Superstructures of nanoparticles fabricated by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials. Nano Lett., 9, 2153-2159 (2009).

  • 15.

    Singh, G. et al. Self-assembly of magnetite nanocubes into helical superstructures. Science 345, 1149–1153 (2014).

    Google Scholar CAS Announcements

  • 16.

    Molotsky, T., Tamarin, T., Ben Moshe, A., Markovich, G. & Kotlyar, AB Synthesis of chiral silver clusters on a DNA template. J.Phys. Chem. VS 114, 15951–15954 (2010).

    CAS Google Scholar

  • 17.

    Im, SW et al. Chiral surface and geometry of metallic nanocrystals. Adv. Mater. 32, 1905758 (2020).

    CAS Google Scholar

  • 18.

    Wang, J. et al. Physical activation of innate immunity by spiny particles. Nat. Nanotechnology. 13, 1078-1086 (2018).

    ADS CAS PubMed PubMed Central Google Scholar

  • 19.

    Geva, M., Frolow, F., Eisenstein, M. & Addadi, L. Antibody recognition of chiral surfaces. Enantiomorphic crystals of leucine-leucine-tyrosine. Jam. Chem. Soc. 125, 696–704 (2003).

    CAS Google Scholar

  • 20.

    Walkey, CD, Olsen, JB, Guo, H., Emili, A. & Chan, WCW Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. Jam. Chem. Soc. 134, 2139-2147 (2012).

    CAS Google Scholar

  • 21.

    del Pino, P. et al. Formation of protein crowns around nanoparticles – from past to future. Mater. horiz. 1, 301-313 (2014).

    Google Scholar

  • 22.

    Wang, X. et al. The chiral surface of the nanoparticles determines the orientation of the adsorbed transferrin and its interaction with the receptors. ACS Nano 11, 4606–4616 (2017).

    CAS Google Scholar

  • 23.

    Kim, J.-Y. et al. Assembly of gold nanoparticles in chiral superstructures driven by circularly polarized light. Jam. Chem. Soc. 141, 11739–11744 (2019).

    CAS PubMed PubMed Central Google Scholar

  • 24.

    Yeom, J. et al. Chiral modeling of self-assembled nanostructures by circularly polarized light. Nat. Mater. 14, 66–72 (2015).

    Google Scholar CAS Announcements

  • 25.

    Ou, Z., Wang, Z., Luo, B., Luijten, E., and Chen, Q. Kinetic pathways of nanoscale crystallization. Nat. Mater. 19, 450–455 (2020).

    Google Scholar CAS Announcements

  • 26.

    Karst, J. et al. Chiral scattering on chemically synthesized single plasmonic nanoparticles. ACS Nano 13, 8659–8668 (2019).

    CAS Google Scholar

  • 27.

    González-Rubio, G. et al. Femtosecond laser reshaping produces gold nanorods with ultra-narrow surface plasmon resonances. Science 358, 640–644 (2017).

    Google Scholar announcements

  • 28.

    Saito, K. & Tatsuma, T. Chiral plasmonic nanostructures fabricated by circularly polarized light. Nano Lett. 18, 3209–3212 (2018).

    Google Scholar CAS Announcements

  • 29.

    Lee, H.-E. et al. Amino acid and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 556, 360–365 (2018).

    Google Scholar CAS Announcements

  • 30.

    Zhang, Q et al. Nanoparticles coated with a neutrophil membrane inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotechnology. 13, 1182-1190 (2018).

    Google Scholar CAS Announcements

  • 31.

    Pelliccia, M. et al. Additives for vaccine storage to improve the thermal stability of adenoviruses from a few hours to several months. Nat. Commmon. seven, 13520 (2016).

    ADS CAS PubMed PubMed Central Google Scholar

  • 32.

    Xia, Y. et al. Exploitation of the flexibility and lateral mobility of the Pickering emulsion for better vaccination. Nat. Mater. 17, 187-194 (2018).

    Google Scholar CAS Announcements

  • 33.

    Langenhan, T., Aust, G. & Hamann, J. Sticky signaling – adhesion class G protein-coupled receptors take center stage. Science. Signal. 6, re3 (2013).

    Google Scholar

  • 34.

    Oldham, WM & Hamm, HE Activation of heterotrimeric G protein by G protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 9, 60–71 (2008).

    CAS Google Scholar

  • 35.

    Ferguson, SM & De Camilli, P. Dynamin, a membrane remodeling GTPase. Nat. Rev. Mol. Cell Biol. 13, 75–88 (2012).

    CAS PubMed PubMed Central Google Scholar

  • 36.

    Richards, DM & Endres, RG Target shape dependence in a simple model of receptor-mediated endocytosis and phagocytosis. proc. Natl Acad. Science. United States 113, 6113–6118 (2016).

    ADS CAS PubMed PubMed Central Google Scholar

  • 37.

    Mahmoudi, M., Azadmanesh, K., Shokrgozar, MA, Journeay, WS & Laurent, S. Effect of nanoparticles on cell life cycle. Chem. Tower. 111, 3407–3432 (2011).

    CAS Google Scholar

  • 38.

    Murray, PJ & Wynn, TA Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11, 723–737 (2011).

    CAS PubMed PubMed Central Google Scholar

  • 39.

    Ohta, S., Glancy, D. & Chan, WCW DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction. Science 351, 841–845 (2016).

    Google Scholar CAS Announcements

  • 40.

    Naur, P. et al. Ionotropic glutamate-like receptor 2 binds D-serine and glycine. proc. Natl Acad. Science. United States 104, 14116–14121 (2007).

    ADS CAS PubMed PubMed Central Google Scholar

  • 41.

    Cobb, MH & Ross, EM in Mol. Biol. Cell 6th ed. (eds Alberts, B. et al.) 589–643 (Garland, 2002).

  • 42.

    Muñoz-Planillo, R. et al. K+ Efflux is the common trigger for NLRP3 inflammasome activation by bacterial toxins and particles. Immunity 38, 1142–1153 (2013).

    PubMed PubMed Central Google Scholar

  • 43.

    Kefauver, JM, Ward, AB & Patapoutian, A. Discoveries of the structure and physiology of mechanically activated ion channels. Nature 587, 567-576 (2020).

    ADS CAS PubMed PubMed Central Google Scholar

  • 44.

    Ranade, SS, Syeda, R. & Patapoutian, A. Mechanically activated ion channels. neuron 87, 1162-1179 (2015).

    CAS PubMed PubMed Central Google Scholar

  • 45.

    Galic, M. et al. External push and internal pull forces recruit bend-responsive N-BAR domain proteins to the plasma membrane. Nat. Cell Biol. 14, 874–881 (2012).

    CAS PubMed PubMed Central Google Scholar

  • 46.

    Chen, L. et al. High-yield seedless synthesis of triangular gold nanoplates by oxidative etching. Nano Lett. 14, 7201–7206 (2014).

    Google Scholar CAS Announcements

  • 47.

    Johnson, PB & Christy, RW Optical constants of noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Google Scholar CAS Announcements

  • Related posts:

    1. The pandemic diary: from masks to music, these ladies from a refuge in Chennai proceed their resilience
    2. Lithium niobate crystal movie for built-in photonics functions
    3. World Main Producers Evaluation, Dynamics and Forecast 2020-2026
    4. Scientific & Precision Options Thrive As Their First Anniversary Approaches |
    Tagsunited states

    Categories

    • Amalgamation
    • Financial Affairs
    • G-8
    • Monotonic
    • Terms of trade
    • TERMS AND CONDITIONS
    • PRIVACY AND POLICY