Machine learning assisted optimization of the process of mixing polyphenylene sulfide with an elastomer using a high speed twin screw extruder

Masamoto, J. Poly (p-phenylene sulfide). In Polymer Data Manual (ed. Mark, JE) 714-721 (Oxford University Press, 1999).
Google Scholar
Fink, JK Poly (phenylene sulfide). In High performance polymers 2nd edition (ed. Mark, JE) 129-151 (Elsevier, 2014).
Google Scholar
Zuo, PY, Tcharkhtchi, A., Shirinbayan, M., Fitoussi, J. & Bakir, F. Global survey of poly (phenylene sulfide) from synthesis and process to applications: a review. Macromole. Check out. Ing. 304, 1800686 (2019).
Google Scholar
Isayev, AI (ed.) Encyclopedia of Polymer Blends Flight. 1 (Wiley, 2010).
Google Scholar
Subramanian, MN Mixtures of polymers and composites: chemistry and technology (Wiley, 2017).
Google Scholar
Masamoto, J. & Kubo, K. Elastomer cured poly (phenylene sulfide). Polym. Ing. Sci. 36, 265-270 (1996).
Lee, SI & Chun, BC Effect of EGMA content on tensile and impact properties of EGMA poly (phenylene sulfide) blends. Polymer 39, 6441-6447 (1998).
Horiuchi, S. & Ishii, Y. Reactive mixtures of poly (phenylene sulfide) and low density polyethylene: morphology, tribology and moldability. Polym. J. 32, 339-347 (2000).
Oyama, HT, Matsushita, M. & Furuta, M. High performance reactive mixtures composed of poly (p-phenylene sulfide) and ethylene copolymers. Polym. J. 43, 991-999 (2011).
Gui, H. et al. Structure, properties and mechanism of reactive compatibility of the epoxy with the polyphenylene sulfide / polyamide elastomer. J. Appl. Polym. Sci. 130, 3411-3420 (2013).
Nara, S., Sagawa, H., Saito, H. & Oyama, HT Synergistic enhancement of poly (phenylene sulfide) by poly (phenylsulfone) and poly (ethylene-ran-methacrylate-ran-glycidyl methacrylate). J. Appl. Polym. Sci. 138, e49994 (2021).
Google Scholar
Wu, SH Phase structure and adhesion in polymer blends: A criterion for rubber toughness. Polymer 26, 1855-1863 (1985).
Wu, SH A generalized criterion for rubber hardening: The critical thickness of the matrix ligament. J. Appl. Polym. Sci. 35, 549-561 (1988).
Isayev, AI (ed.) Encyclopedia of Polymer Blends Flight. 2 (Wiley, 2011).
Google Scholar
Brunton, S. & Kutz, J. Data-driven science and engineering: machine learning, dynamic systems and control (Cambridge University Press, 2019).
Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A. & Kim, C. Machine learning in materials computing: recent applications and perspectives. NPJ calculation. Check out. 3, 54 (2017).
Butler, KT, Davies, DW, Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547-555 (2018).
Medford, AJ, Kunz, MR, Ewing, SM, Borders, T. & Fushimi, R. Knowledge Extraction from Data Using Catalyst Computing. ACS Catal. 8, 7403-7429 (2018).
Himanen, L., Geurts, A., Foster, AS & Rinke, P. Data-driven materials science: state, challenges and perspectives. Av. Sci. 6, 190808 (2019).
Google Scholar
Barnard, AS & Opletal, G. Prediction of structure / property relationships in multidimensional nanoparticle data using the integration of t-distributed stochastic neighbors and machine learning. Nanoscale 11, 23165-23172 (2019).
Tran, HD et al. Machine learning predictions of polymer properties with the polymer genome. J. Appl. Phys. 128, 171104 (2020).
Chen, G. et al. De novo design assisted by machine learning of organic molecules and polymers: opportunities and challenges. Polymers 12, 163 (2020).
Kojima, T., Washio, T., Hara, S. & Koishi, M. Synthesis of computer simulation and machine learning to obtain the best material properties of loaded rubber. Sci. representing ten, 18127 (2020).
Li, C. et al. Rapid Bayesian optimization for the synthesis of short polymeric fiber materials. Sci. representing seven, 5683 (2017).
Pellegrino, F. et al. Machine learning approach to elucidate and predict the role of synthesis parameters on the shape and size of TiO2 nanoparticles. Sci. representing ten, 18910 (2020).
Damiati, SA, Rossi, D., Joensson, HN & Damiati, S. Artificial intelligence application for rapid fabrication of size adjustable PLGA microparticles in microfluidics. Sci. representing ten, 19517 (2020).
Mekki-Berrada, F. et al. Two-step machine learning enables optimized synthesis of nanoparticles. NPJ calculation. Check out. seven, 55 (2021).
Tomiyama, H., Fukuzawa, Y. & Fukuzawa, D. Automatic optimization of the screw configuration of a co-rotating twin screw extruder meshing using an artificial intelligence algorithm. Seikei-Kakou 30, 162-169 (2018).
Altarazi, S., Allaf, R. & Alhindawi, F. Machine learning models to predict and classify the tensile strength of polymer films made through different production processes. Materials 12, 1475 (2019).
Casteran, F. et al. Application of machine learning tools for improving reactive extrusion simulation. Macromole. Check out. Ing. 305, 2000375 (2020).
Breiman, L. Random forests. Mach. To learn. 45, 5-32 (2001).
Shimizu, H., Li, YJ, Kaito, A. & Sano, H. Formation of nanostructured PVDF / PA11 mixtures using high shear processing. Macromolecules 38, 7880-7883 (2005).
Li, YJ & Shimizu, H. Manufacture of nanostructured polycarbonate / poly (methyl methacrylate) blends with improved optical and mechanical properties by high shear processing. Polym. Ing. Sci. 51, 1437-1445 (2011).
Teyssandier, F., Cassagnau, P., Gérard, JF, Mignard, N. & Melis, F. Morphology and mechanical properties of PA12 / plasticized starch mixtures prepared by high shear extrusion. Check out. Chem. Phys. 133, 913-923 (2012).
Farahanchi, A., Malloy, R. & Sobkowicz, MJ Effects of ultra-high speed twin screw extrusion on thermal and mechanical degradation of polystyrene. Polym. Ing. Sci. 56, 743-751 (2016).
Farahanchi, A., Boehm, E., Orbey, N. & Malloy, R. The effect of ultra-high speed twin screw extrusion on the properties of the nanocomposite ABS / organic clay mixture. Polym. Ing. Sci. 57, 60-68 (2017).
Farahanchi, A. & Sobkowicz, MJ Kinetic and process modeling of thermal and mechanical degradation in very high speed twin screw extrusion. Polym. Degrade. Stabilize. 138, 40-46 (2017).
Farahanchi, A., Malloy, RA & Sobkowicz, MJ Extreme shear treatment for exfoliation of organic clay in nanocomposites with incompatible polymers. Polymer 145, 117-126 (2018).
Sui, general practitioner et al. A comparative study of high shear force and compatibilizer on phase morphologies and properties of polypropylene / polylactide (PP / PLA) blends. Polymer 154, 119-127 (2018).
Raj, A., Samuel, C., Malladi, N. & Prashantha, K. Improved (thermo) mechanical properties in bio-based poly (L-lactide) / poly (amide-12) blends using high extrusion processing. shear without compatibilizers. Polym. Ing. Sci. 60, 1902-1916 (2020).
Abeykoon, C., Martin, PJ, Kelly, AL & Brown, EC A review and evaluation of melting temperature sensors for polymer extrusion. Sense. Actuator A-Phys. 182, 16-27 (2012).
Vera-Sorroche, J., Kelly, AL, Brown, EC & Coates, PD Infrared measurement of the melting temperature of the single-screw extrusion. Polym. Ing. Sci. 55, 1059-1066 (2015).
Emin, MA, Teumer, T., Schmitt, W., Radle, M. & Schuchmann, HP Measurement of the actual melting temperature in a twin-screw extrusion process of starch-based dies via an infrared sensor. J. Food Eng. 170, 119–124 (2016).
Google Scholar
ImageJ. https://imagej.nih.gov/ij/.
Python. https://www.python.org/.
Scikit-learn. https://scikit-learn.org/stable/.